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Vorticity and curvature at a free surface
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For two-dimensional flow there is a simple relation between the vorticity at a stress-free
surface and the surface curvature. In this note the relation is generalized to flow in three
dimensions. It is shown that in addition to a component of vorticity perpendicular to
the flow there is also a component parallel to the direction of flow. The latter vanishes
only at an umbilical point or when the flow is in one of the two principal directions of
curvature.

1. Introduction

The boundary conditions prevailing at a free surface where both tangential
components of the stress tensor vanish is of considerable interest for studies of surface
waves, rising bubbles, free-surface turbulence, and other applications. In purely two-
dimensional flow, there exists a simple relation

ω¯®2κq (1)

between the vorticity ω, the tangential velocity q and the curvature κ, assuming the
surface to be steady (see Longuet-Higgins 1953, 1992; Batchelor 1967). The question
we consider here is how to find an extension of the formula to general, steady surfaces
in three dimensions.

Just this problem has in fact been treated by Batchelor in his textbook (1967, §5.14)
by the use of orthogonal curvilinear coordinates. But although such coordinates can
always be chosen in general, such a choice necessarily imposes some restrictions on the
results as there stated. It turns out, as we shall show, that in addition to a component
of vorticity perpendicular to the flow, which is given by an expression similar to
equation (1), there is in general a component of vorticity parallel to the flow, which
vanishes only under special conditions; see equation (18). An alternative derivation is
given in §3.

Other authors (Creswell & Morton 1995; Rood 1995; Wu 1955; Sarpkaya 1996)
have considered the same problem in special cases or with generalized notation which
tends to hinder a physical interpretation of the results, and to conceal their essential
simplicity. An expression equivalent to equation (18) has been obtained by Peck &
Sigurdson (1997), but the derivations given here are believed to be more elementary.

2. Proof A

In the following we shall adopt the same approach as Batchelor (1967) but with a
slightly modified notation.

Let us take orthogonal curvilinear coordinates (ξ
"
, ξ

#
, ξ

$
) so that ξ

$
is in the direction

of the outward normal to the surface. The elements of length in the three coordinate
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directions are denoted by h
"
dξ

"
, h

#
dξ

#
, h

$
dξ

$
respectively, and the three components of

velocity by u
"
, u

#
, u

$
. Then the component of vorticity in the ξ

"
-direction is given by

ω
"
¯

1

h
#
h
$

9¥(u$
h
$
)

¥ξ
#

®
¥(u

#
h
#
)

¥ξ
$

: (2)

(see Batchelor 1967, Appendix 2), and the component e
$#

of the rate-of-strain tensor
is given by

2e
$#

¯
1

h
#
h
$

9h#

$

¥(u
$
}h

$
)

¥ξ
#

h#

#

¥(u
#
}h

#
)

¥ξ
$

: . (3)

Equations (2) and (3) lead immediately to the identity

ω
"
2e

$#
¯

2

h
#
h
$

0h$

¥u
$

¥ξ
#

®u
#

¥h
#

¥ξ
$

1 . (4)

If now the surface is steady and the velocity is measured relative to the surface we must
have

u
$
3 0,

¥u
$

¥ξ
#

¯ 0 (5)

and if moreover the components of tangential stress both vanish at the surface then

e
$"

¯ e
$#

¯ 0. (6)
Hence equation (4) reduces to

ω
"
¯®

2u
#

h
#
h
$

¥h
#

¥ξ
$

(7)

and similarly we find

ω
#
¯

2u
"

h
"
h
$

¥h
"

¥ξ
$

. (8)

Because the coordinates are mutually orthogonal, the normal curvature κ
"

of the
ξ
"
-axis is given by

κ
"
¯®

1

h
"

¥h
"

¥n
, (9)

where n is distance measured normal to the surface (κ
"

is taken to be positive if the
surface curves outwards). Since dn¯ h

$
dξ

$
we have

κ
"
¯®

1

h
"
h
$

¥h
"

¥ξ
$

(10)

so that equation (5) becomes
ω
"
¯ 2κ

#
u
#
. (11)

Similarly we find
ω
#
¯®2κ

"
u
"
. (12)

There is no restriction on the normal component of vorticity ω
$
.

At first sight it might appear that the above formulae could be applied to any system
of orthogonal coordinates on the surface ξ

$
¯ 0; in other words, that the vorticity

vector was always normal to the velocity vector (Batchelor 1967). But this is not the
case. The assumption that the coordinate system is triply orthogonal implies that the
choice of coordinates (ξ

"
, ξ

#
) is more special, as is shown by Dupin’s theorem (see

Weatherburn 1961, p. 211) :
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The cur�es of intersection of the surfaces of a triply orthogonal system are lines of
cur�ature on each.

Hence for equations (11) and (12) to be generally valid, the coordinate curves ξ
"
and

ξ
#
, must be lines of cur�ature on the surface ξ

$
¯ 0. That is to say, the normal to each

coordinate curve is coplanar with the normal to the surface at the origin. Moreover κ
"

and κ
#

must be the two principal curvatures, κ
a

and κ
b
, say.

In the case when the flow velocity q is in one of the principal directions, say along
the ξ

"
-axis, then u

#
¯ 0 and from equations (7) and (8) we have

ω
"
¯ 0, ω

#
¯®2κ

"
u
"
. (13)

A physical interpretation is as follows. To second order, the surface has locally the
form of an ellipsoid or hyperboloid with reflexive symmetry about the ξ

"
-axis. This

symmetry means that ω
"
must vanish, while ω

#
is given by an expression analogous to

equation (1) for the two-dimensional situation.
On the other hand suppose that the velocity q is in a direction making some general

angle α with the axis of ξ
"
, that is

u
"
¯ q cosα, u

#
¯ q sinα. (14)

The two components ωs and ωv of the surface vorticity parallel and perpendicular to
the flow are given by

ωs ¯ ω
"
cosαω

#
sinα,

ωv ¯®ω
"
sinαω

#
cosα.

5

6

7

8

(15)

Substituting from equations (11), (12) and (14) we obtain

ωv ¯®2q(κ
a
cos#ακ

b
sin#α). (16)

By Euler’s theorem (Weatherburn 1961, p. 73) this can be written

ωv ¯®2qκ
n

(17)

where κ
n

denotes the normal curvature of the particle path.
But from (15) we have also

ωs ¯ 2q(κ
b
®κ

a
) cosα sinα (18)

showing that the component of vorticity parallel to the flow does not vanish in general.
Exceptions may occur when α¯ 0 or α¯ "

#
π (when the flow is parallel to one of the

principal directions) or when κ
a
¯ κ

b
, that is if the two principal curvatures are equal

so the point on the surface is an umbilic. Physically, the non-vanishing vorticity (18)
may be thought of as a twisting motion induced by the twisting of the normal n along
the path of the particle.

3. Proof B

In view of the vanishing of e
"$

and e
#$

, the rate-of-strain tensor e has the form

e¯

E

F

e
#"

e
""

0

e
##

e
"#

0

0

0

e
$$

G

H

. (19)

One of the eigenvalues of this tensor is clearly e
$$

, and the corresponding principal
direction is in the direction of the normal. In other words, one of the principal axes of
strain is always normal to the surface. But by the well-known analysis of strain given
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for example in Batchelor (1967, §2.3), any line of fluid particles parallel to a principal
axis of strain must be in rotation with angular velocity "

#
ω, where ω is the vorticity.

Since one axis of strain is always normal to the free surface, the normal is a kind of
continuation of such a line of particles. It follows that the normal must rotate with
angular velocity "

#
ω.†

From the above remark we are led directly to an alternative proof of our results. For,
since the unit normal n is a vector of constant length rotating with the same angular
velocity "

#
ω as the principal axes of strain, we have

dn

dt
¯

1

2
ωgn. (20)

Writing ds for the element of path length and q¯ds}dt we obtain

ωgn¯ 2q
dn

ds
(21)

which is equivalent to equations (11) and (12) above. For, taking the vector product
of n with each side of (21) we have for the tangential part of the vorticity

ω
s
¯ω®(n[ω)n¯ 2qng

dn

ds
. (22)

If (ξ
"
, ξ

#
) are general curvilinear coordinates on the surface, not necessarily orthogonal,

r is the position vector and r
i
denotes ¥r}¥ξ

i
it follows that

ω
s
[r

i
¯ 2q 9n,

dn

ds
, r

i: , i¯ 1, 2. (23)

(The square brackets denote triple vector products.) But

dn¯n
"
dξ

"
n

#
dξ

#
(24)

where n
i
denotes ¥n}¥ξ

i
. If now the coordinates x

"
and ξ

#
are mutually orthogonal, then

h
"

dξ
"

ds
¯ cosα, h

#

dξ
#

ds
¯ sinα. (25)

Hence
ω

s
[r

i
¯ 2q²(1}h

"
) [n,n

"
, r

i
] cosα(1}h

#
) [n,n

#
, r

i
] sinα´. (26)

But the triple products in equation (26) can be expressed in terms of the fundamental
magnitudes at a point on the surface (see the Appendix) and in particular when the
coordinates ξ

"
, ξ

#
are in the principal directions of curvature, then we find

[n,n
"
, r

"
]¯ 0, [n,n

"
, r

#
]¯®h

"
h
#
κ
"
,

[n,n
#
, r

"
]¯ h

"
h
#
κ
#
, h

#
[n,n

#
, r

#
]¯ 0.

5

6

7

8

(27)

Thus equations (26) reduce to (11) and (12). The rest of §2 then follows.

Appendix

For convenience and possible use in applications we state here some known
formulae for the triple vector products in [n,n

j
, r

i
] occurring in equation (26).

† The fluid is not of course in a solid-body rotation, as was inadvertently stated by Longuet-
Higgins (1992) in the two-dimensional case. That would be true only if e were to vanish identically.
At the same time as rotating, the elements of fluid are also undergoing an arbitrary straining motion.
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In any system of curvilinear coordinates (ξ
"
, ξ

#
) on a surface in three dimensions we

can define the first-order magnitudes

E¯ r
"
[r

"
, F¯ r

"
[r

#
, G¯ r

#
[r

#
, (A 1)

where r is the position vector and suffices i denote differentiation with respect to ξ
i
.

These quantities occur naturally in the general expression for the arclength ds :

ds#¯Edξ#

"
2Fdξ

"
dξ

#
Gdξ#

#
. (A 2)

The second-order magnitudes L,M,N, are defined by

L¯n[r
""

, M¯n[r
"#

, N¯n[r
##

. (A 3)

Then it may be shown (Weatherburn 1961, §27, for example) that

H[n,n
"
, r

"
]¯EM®FL, H[n,n

"
, r

#
]¯FM®GL,

H[n,n
#
, r

"
]¯EN®FM, H[n,n

#
, r

#
]¯FN®GM,

5

6

7

8

(A 4)

where
H #¯EG®F #. (A 5)

If the coordinates are orthogonal, then F¯ 0, E¯ h#

"
and G¯ h#

#
, and

H[n,n
"
, r

"
]¯EM, H[n,n

"
, r

#
]¯®GL,

H[n,n
#
, r

"
]¯EN, H[n,n

#
, r

#
]¯®GM.

5

6

7

8

(A 6)

If further the coordinate curves are in the two principal directions then M¯ 0,
L}E¯ κ

a
, N}G¯ κ

b
and we obtain equations (27).
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